
Multivariate Aviation Time Series Modeling: VARs vs. LSTMs

Hardik Goel∗ Igor Melnyk† Nikunj Oza‡ Bryan Matthews‡ Arindam Banerjee∗

Abstract

Multivariate time-series modeling and forecasting con-
stitutes an important problem with numerous appli-
cations. In this work, we consider multivariate con-
tinuous time series modeling from aviation, where the
data consists of multiple sensor measurements from real
world flights. While traditional approaches such as VAR
(vector auto-regressive) models have been widely used
for aviation time series, recent years have seen signifi-
cant advances in modeling sequences using LSTMs (long
short term memory models). In this paper, we do a care-
ful empirical comparison between VAR and two types
of LSTMs on multivariate aviation time series. Surpris-
ingly, VAR is seen to significantly outperform LSTMs
on real flight data, as well as synthetic data generated
from VAR models and LSTM models. The results sug-
gest that VAR is more suitable for multivariate contin-
uous data especially from aviation where there may not
be much utility for modeling long term memory which
is a strength of LSTMs.

1 Introduction

Multivariate time-series modeling and forecasting con-
stitutes an important problem with numerous applica-
tions in several real-world domains such as healthcare,
finance, climate, and aviation [15, 20, 29]. In the avi-
ation industry, the United States alone can expect an
increase of more than 60% in its commercial air traf-
fic the over the next two decades [2]. Such growth can
lead to increased congestion on the ground and in the
air, creating safety issues leading to possible accidents.
In response to this problem, air transportation authori-
ties are focusing their efforts towards enhancing existing
air traffic control system, in part by improving the pro-
cessing and analysis of the flight information (known as
Flight Operations Quality Assurance (FOQA) data [3])
to find unsafe flight patterns, detect aircraft operation
issues, identify pilot-aircraft interaction problems, etc.
Accurate modeling and prediction of the FOQA data

∗Department of Computer Science and Engineering, University

of Minnesota, MN
{

goelx033, banerjee
}

@cs.umn.edu
†IBM Research, T. J. Watson Research Center, Yorktown

Heights, NY igor.melnyk@ibm.com
‡NASA Ames Research Center, Moffett Field, CA{

nikunj.c.oza,bryan.l.matthews
}

@nasa.gov

is therefore of great importance and is the motivation
behind the current work. Each flight is represented as
a multivariate, continuous time-series, describing the
time evolution of many on-board sensors sampled at 1
Hz, and has a duration varying from 30 minutes to sev-
eral hours. The major challenge with modeling such
data lies in capturing the proper temporal variations
for each flight sensor as well as the possible correlations
between them at the each time step.

In recent years, several model-based approaches
were proposed for the analysis of the flight data. For
example, [23] proposed a dynamic Bayesian network
to model the continuous flight sensors as well as dis-
crete pilot commands. In [11] the authors used a spe-
cially designed linear regression model to describe the
aerodynamic forces acting on an aircraft, and [25] simi-
larly used regression approach to model and predict fuel
consumption in jet engines. More recently, the work
in [21, 20] proposed several Vector Auto-Regressive
(VAR)-based approaches to model the FOQA data and
used them to detect abnormal activities in the flights. In
parallel, significant recent advances have been made in
modeling sequential data using Recurrent Neural Net-
works (RNNs). In particular, the Long-Short Term
Memory (LSTM) model, an extension of RNN, has
shown great promise in several tasks [12, 28]. However,
LSTMs have not been carefully explored as an approach
for modeling multivariate aviation time series.

In this paper, we do a careful empirical compari-
son between VAR and LSTMs for modeling multivariate
aviation time series. We consider two different LSTM
architectures (see Sections 3.2 and 3.3) and compare
their performance with VAR for making one-step-ahead
and multi-step-ahead predictions. Through experiments
on real flight data, we find that VAR significantly out-
performs both types of LSTMs for both one-step- and
multi-step-ahead predictions. We also evaluate their
performance on synthetic datasets generated from VAR
and LSTM models, and VAR outperforms LSTMs on
both types of synthetic datasets. In spite of the popu-
larity of LSTMs in recent years, the findings illustrate
that in certain domains traditional linear models such as
VAR can still significantly outperform LSTMs. The re-
sults are somewhat consistent with the findings of Gers
et al. in [9], where they found that traditional, sim-

pler approaches can outperform LSTM in predicting the
Mackey-Glass time-series [18]. Our results indicate that
more careful study of LSTMs, especially their utility in
modeling multivariate continuous time-series, is needed.
Further, since LSTMs are highly non-linear models with
several choices for their architecture, identifying a suit-
able architecture for a problem domain can be more
challenging compared to VAR models. Finally, the rel-
ative performance of VAR and LSTMs may have to do
with properties of aviation data. While one of the main
strengths of LSTMs is the ability to model long term
dependencies, multivariate flight sensor data may not
have such long term dependencies, making LSTMs un-
suitable for the domain.

The rest of the paper is organized as follows. In
Section 2 we discuss the related work of VAR- and
LSTM-based methods in aviation and other domains.
The standard LSTM and the proposed two architectures
are given in Section 3, while the VAR model is shown
in Section 4. Experiments are presented in Sections 5
and 6; and in Section 7 we conclude the paper.

2 Related Work

In this section we review the relevant literature for
the two broad approaches for modeling time series
considered in this paper: Vector AutoRegressive (VAR)
and Long-Sort Term Memory (LSTM) models.

2.1 Vector Auto-Regressive Models (VARs)
VAR models [17] arguably are the most widely used
family of multivariate time series statistical approaches.
These models have been applied in a wide variety of
applications, ranging from describing the behavior of
economic and financial time series [31] to modeling dy-
namical systems [16] and estimating brain function con-
nectivity [32], among others. Recent work has success-
fully applied VAR models to analyze multivariate avia-
tion time series data, i.e., multiple sensor measurements
for flights [19, 21, 20]. By modeling the time evolution
of multiple on-board sensors, these approaches aimed
at accurate prediction of aircraft behavior to discover
anomalous events from a large dataset of flight infor-
mation. Extensive experimental evaluations illustrated
that VAR models have good performance in modeling
flight data and detecting various types of anomalies,
outperforming the existing state-of-the-art approaches.

2.2 Long Short Term Memory Models
(LSTMs) LSTM is a special kind of Recurrent
Neural Network (RNN), originally introduced by
Hochreiter & Schmidhuber [13]. Because of their
ability to learn long term patterns in sequential data,
they have recently been applied to diverse set of prob-

lems, including handwriting recognition [12], machine
translation [28] and many others.

The simplest LSTM model that takes in a sequence
of inputs and produces a single output (i.e., performing
1-step-ahead prediction) has found its use mainly in
sequence classification tasks such as text classification
[5] or in medical diagnosis [15]. The common property of
these problems is that the data is a discrete sequence;
the continuous time series modeling has not found its
way in much of LSTM work. Few examples are the work
of [34] for emotion recognition or [33] for online music
mood regression, where such models were applied on the
continuous-valued datasets. Apart from this, the work
of [24] has used LSTM-based prediction model on the
Mackey Glass time-series, achieving promising results.
Similar to the above work, in this paper we use the
standard LSTM model (see Section 3.3) on continuous-
valued data to make a one-step-ahead prediction, given
the past sequence of inputs.

Another LSTM-based model that we explore in
this work is the sequential encoder-decoder, which was
first introduced in [4], where they used traditional
RNN and applied it on the task of statistical machine
translation. Similar work, but based on LSTM, was also
done in [28] and [26], achieving good results. We also
found that using encoder-decoder architecture is more
suitable for multiple-step-ahead prediction as opposed
to using the standard model, treating its own current
output as input at the next step and causing inaccurate
predictions due to error accumulation.

In the aviation domain, very limited work was done
in applying LSTMs to the flight data. An exception
is the work of [8], where they explore the use of such
models for modeling aircraft engine vibrations. The
authors explore different parameters for LSTMs and
compare the results. However, the presented results
were not compared against any other baseline models;
moreover, it was not clear if the dataset was similar to
FOQA, as is used in the current work.

3 Long Short Term Memory Models

In this section, we give an introduction to the LSTM
model and discuss its two specific variants, viz. the
standard LSTM (LSTM-STD) and LSTM Sequential
Encoder-Decoder (LSTM-SED) models.

3.1 From RNNs to LSTMs We start by review-
ing the standard Recurrent Neural Network (RNN), fol-
lowed by the discussion of the key shortcoming in RNNs,
namely the vanishing/exploding gradient problem, lim-
iting the ability to learn long-term data dependencies
and present the LSTMs, which address this challenge.

Figure 1: Recurrent Neural Network (RNN). The left side of
the figure illustrates the feedback loop of the model, where
xt, ht and yt are the input, hidden state and output. The
right side shows RNN unfolded in time, which also illustrates
the flow of the gradients during the backpropagation step of
the training; Et is the error in yt at time t.

3.1.1 Why LSTMs? Given a time-series data
x1, x2, . . . , xt, the RNN is defined by the following re-
current relation

ht = σ(Wxt + Uht−1 + b),(3.1)

where, xt ∈ Rd is the input at time t, W ∈ Rn×d,
U ∈ Rn×n, b ∈ Rn are the hidden state parameters, ht
and ht−1 ∈ Rn are the hidden state vectors at times
t and t − 1, respectively, and σ is the logistic sigmoid
function. Figure 1 shows an example of RNN model,
whose main part is the feedback loop, generating the
hidden state ht at time step t from the current input xt
and previous hidden state ht−1.

The main issue with RNN model is that during
training, while applying the backpropagation-through-
time (BPTT) algorithm, the error gradients can quickly
vanish/explode [22]. This is due to the application of
the chain rule of the differentiation at each time step.
The gradient of the hidden state at time t with respect
to the hidden state at some step t−k is a product of the
form

∏t
i=k+1

∂hi

∂hi−1
. If the gradient at each time step is

greater than or less than 1, the product of such values
can grow or vanish exponentially fast. This prevents
the network from capturing the long-term dependencies
in the data. LSTMs, an extension of RNNs, were
introduced as a mechanism to prevent these issues by
backpropagating a constant error gradient.

3.1.2 Inside LSTMs To address the vanish-
ing/exploding gradient problem of RNN, the LSTM
defines a new hidden state, called a cell. Each cell
has its own cell state, which acts like a memory,
and various control mechanisms, called gates, enable
modification of the cell memory. Through the use of
such mechanisms, the LSTM can effectively learn when
to forget the old memories (forget gate), when to add
new memories from the current input (input gate) and
what memories to present as output from the current
cell (output gate).

Each gate is a single layer neural network whose
weights are the extra parameters to be learned during

training. The gates have sigmoidal activation in their
outputs, squashing the output to [0, 1] range. These
values indicate, as fractions, how much reading, writing
or forgetting to perform, giving increased learning power
to the model. More detailed description of the LSTM
is presented below.

An LSTM cell, at time t, receives a cell state ct−1 ∈
Rn and ht−1 ∈ Rn, from the previous time step t − 1,
where n is the dimension of the hidden state. The cell
also receives the current input xt ∈ Rd. The value of
the forget gate is then calculated as

ft = σ(Wfxt + Ufht−1 + bf),(3.2)

where Wf ∈ Rn×d, Uf ∈ Rn×n, bf ∈ Rn are the forget
gate parameters and ft ∈ Rn is the output of the gate.
This output determines what to erase from the previous
cell state. The input gate is also applied to determine
what parts of the current input are to be added to the
cell state. This is accomplished with the following two
operations

it = σ(Wixt + Uiht−1 + bi)(3.3)

c̃t = tanh(Wcxt + Ucht−1 + bc),(3.4)

where Wi ∈ Rn×d, Ui ∈ Rn×n, bi ∈ Rn are the input
gate parameters and it ∈ Rn is the output of the gate in
(3.3) and Wc ∈ Rn×d, Uc ∈ Rn×n, bc ∈ Rn in (3.4) are
the parameters for selecting a candidate state, c̃t ∈ Rn.
The candidate state along with the input and forget
gates together determine the current state of the cell,
ct ∈ Rn, according to

ct = it � c̃t + ft � ct−1,(3.5)

where � represents the element-wise Hadamard prod-
uct. The final step is the output gate, which determines
the output from the current cell state

ot = σ(Woxt + Uoht−1 + bo)(3.6)

ht = ot � tanh(ct),(3.7)

where Wo ∈ Rn×d, Uo ∈ Rn×n, bo ∈ Rn are the output
gate parameters and ot ∈ Rn is used to calculate the
output ht ∈ Rn in (3.7). Note that ht itself can be used
as the final output of the network. If ht does not have
the desired dimension, one can use a fully connected
feed-forward neural network to convert it to an output
yt with the desired dimensions. Figure 2 illustrates the
entire flow inside the LSTM cell.

3.1.3 LSTMs vs. RNNs Having seen the architec-
ture of an LSTM cell, we briefly discuss why it addresses
the vanishing/exploding gradient problem, introduced
in Section 3.1.1. The main reason LSTM does not suf-
fer from the vanishing gradient problem is because cell

Figure 2: An LSTM cell at time t. The color mapping is
similar to Figure 1, showing that ht here is equivalent to
hidden state ht of RNN and ct is a new component that is
added to the LSTM cells. The ht here can be used as the
cell output or converted using a feed-forward connection to
an output yt. The σs represent the gates of the cell, which
are single layer neural networks with sigmoidal activation.

state ct is updated using only addition operation, as op-
posed to RNN, which involves a sigmoidal transforma-
tion (3.1). During backpropagation-through-time, the
partial derivative ∂ct

∂ct−1
depends on the value of the for-

get gate ft, as can be seen in (3.5). This means that
if the forget gate always outputs a vector of 1s, only a
constant error is propagated back to every step. Sim-
ilarly, LSTM does not suffer from exploding gradient
because the sigmoidal forget gate cannot output values
greater than 1. Compared to RNN, where the error
gradient was multiplied by the parameter matrix and a
sigmoidal derivative at each time step, it is evident that
LSTM is able to learn long-range data dependencies.

3.2 Standard LSTM (LSTM-STD) The first
LSTM architecture used in this work is the standard
LSTM model, that takes a fixed-length sequence of vec-
tors x1, x2, . . . , xt ∈ Rd as input and generates a single
output vector x̂t+1 ∈ Rd using a final feed-forward con-
nection on top of ht. The vector x̂t+1 represents the
model’s prediction for the future. In the next step, it
takes as input the next sequence from the data x2, ...
xt+1 and generates x̂t+2 as output. We refer to this
model as LSTM-STD, since it is the basic LSTM model
without any add-ons. Equation (3.8) shows the relation
between x̂t+1 and ht

x̂t+1 = σ(Wffht + bff),(3.8)

where Wff ∈ Rd×n and bff ∈ Rd are the parameters of
the final fully-connected, feed-forward layer and ht ∈ Rn

can be generated using xt, ct−1 and ht−1 as presented
in Section 3.1.2.

The same model is used for 5-step-ahead predic-
tion as well. The first input is a data sequence
x1, x2, . . . , xt ∈ Rd and the output is x̂t+1 ∈ Rd. The
model then takes in the sequence x2,. . . , xt, x̂t+1 to
generate the output x̂t+2. Thus the model uses its own

Figure 3: LSTM-STD model. Blue boxes (bottom layer) are
the data inputs, green boxes (second from below) are the
LSTM cells, yellow boxes (third from below) represent the
cell outputs, and finally the red box is the predicted output.
We also added a dense feed-forward layer at the final output,
converting the high-dimensional h5 to x̂6 of input-dimension
d. Also, note that a network with an input sequence length
of 5 is shown here just for illustration (in experiments, we
used input sequence length of 10).

output as part of the next input to predict any num-
ber of steps into the future. The LSTM-STD model is
illustrated in Figure 3.

3.3 LSTM Sequential Encoder-Decoder
(LSTM-SED) The second LSTM architecture
that we used is a sequential autoencoder-based model,
inspired from the work of Srivastava et al. [26]. This
model consists of two LSTMs, where the first one
(called Encoder LSTM) works like the LSTM-STD
model, presented in Section 3.2. It takes in a fixed-
length sequence of vectors x1, x2, . . . , xt ∈ Rd as input
and produces the output ht ∈ Rn, where n is the hidden
state dimension. We call this vector ht, the encoded
version of the sequential input. This vector is then fed
as input to the second LSTM (called Decoder LSTM)
at each time-step. The decoder LSTM generates a
sequence of outputs x̂t+1, x̂t+2, . . . , x̂t+k ∈ Rd that
represent the model prediction, where k is the number
of predicted steps. The LSTM-SED model is illustrated
in Figure 4.

There are certain similarities and differences be-
tween our model and the ones that [26] have used, which
are worth mentioning. Our model is the same as theirs
in that both of them accept sequential input data, pro-
duce encoded representation and then use it to make
predictions. The difference, however, is in the way the
encoded representation is used by the decoder. [26] han-
dle it in two different ways. In the first one, they pro-
vide the encoded vector as input only to the first cell
of the decoder LSTM, while the rest of the cells do not
receive any input (unconditional model). In the other
variant, the encoded vector is provided as input only to
the first cell of the decoder LSTM, while for the remain-
ing cells the output generated from the previous decoder
cell is used as input (conditional model). They present
arguments for and against both of these models, an im-

Figure 4: LSTM-SED model. Blue boxes are the data
inputs. The left block is the Encoder LSTM, and the
right block is the Decoder LSTM. The Encoder LSTM
produces the encoded vector h3, which is fed in as inputs
to Decoder LSTM. Fully-connected, feed-forward networks
are then used to convert each cell’s output (yellow boxes
in Decoder LSTM) into the final predictions x̂s (red boxes
at the top). Note that a network with input and output
sequence length of 3 is shown here just for illustration (in
experiments, we used input and output sequence lengths of
10 and 5).

portant one being that conditioning the decoder cells
on the previous cell’s output does not force it to look
deep inside the encoder for valuable information. In our
case, once we generate the encoded representation, we
send this vector as input to each cell of the decoder.
This ensures that the model only uses the actual in-
puts x1, . . . , xt to predict the outputs x̂t+1,. . . , x̂t+k.
This is important because the errors in prediction do
not accumulate. From the learning point of view, pro-
viding the encoded representation as input at each step
of the decoder helps it learn by exploiting short-range
correlations, rather than trying to use the encoded rep-
resentation from k steps ago.

4 Vector Autoregressive Models

In this Section we present the details of the Vector Au-
toRegressive model and discuss the method to preform
parameter estimation. VAR is a popular statistical ap-
proach to model linear dependencies among multiple
features that evolve in time [16, 17]. In general form,
the k-th order VAR model can be written as

xt =A1xt−1 + . . .+Akxt−k + εt,(4.9)

where A ∈ Rd×d are the matrices of coefficients, x ∈ Rd

is the vector of parameters, ε ∈ Rd is the zero-mean
white noise, and t = max(k+1), . . . , T , where T denotes
the length of time series. The subscript k determines the
lag of the model, i.e., the degree to which the data in
the current time step depends on the data in the past.

To estimate the VAR parameters, the model in
(4.9) is usually transformed into the form suitable for a
least-square estimator. Specifically, let (x0, x1, . . . , xT)
denote the T + 1 samples generated by the stable VAR

model in (4.9), then stacking them together we obtain
xTk
xTk+1

...
xTT

 =


xTk−1 xTk−2 . . . xT0
xTk xTk−1 . . . xT1
...

...
. . .

...
xTT−1 xTT−2 . . . xTT−k



AT

1

AT
2
...
AT

k

 +


εTk
εTk+1

...
εTT


which can also be compactly written as

Y = XB + E,(4.10)

where Y ∈ RN×p, X ∈ RN×kp, B ∈ Rkp×p, and
E ∈ RN×p for N = T − k + 1. Vectorizing (column-
wise) each matrix in (4.10), we get

vec(Y) = (Ip×p ⊗X)vec(B) + vec(E)

y = Zβ + ε,

where y ∈ RNp, Z = (Ip×p ⊗ X) ∈ RNp×kp2

, β ∈
Rkp2

, ε ∈ RNp, and ⊗ is the Kronecker product.
Consequently, the least-squares estimator then takes the
form

β̂ = argmin
β∈Rkp2

1

N
||y − Zβ||22.(4.11)

Note that if the domain problem entails certain
structure in the paramaters A, e.g., sparsity, low-
rank structure, etc., then the estimator (4.11) can be
regularized with different regularization norms, e.g., L1

norm, nuclear norm [14], etc. Note that matrix Z in
(4.11) can become very tall in cases when the length
of time series is large. The standard approaches of
estimating β, based on regular QR decomposition [10],
become impractical. For this purpose, in practice, we
use the approach of [6] based on Tall and Skinny QR
(TSQR), which enables to perform QR of a tall matrix
in a block-by-block manner.

5 Experimental Setup

Our experiments focus on comparing VAR and LSTM
models for multivariate time-series prediction on both
the real aviation data as well as synthetic datasets.
In this section we discuss the different architectures
considered and the datasets used.

5.1 Model Parameters and Evaluation Metrics
VAR. For the VAR model, we used an input sequence
of length 10 (i.e., 10th order VAR), which means that
for d = 42 dimensional input (this is the number of
continuous-valued sensors we used in the flight datasets,
as described in Section 5.2), it would have 10d2 =
17, 640 parameters to learn.
LSTM-STD. For the standard LSTM model, we again
used an input sequence length of 10 and 1 hidden layer
with n = 64 units in each LSTM cell. The hidden

layer was used with the ReLu non-linearity. For the
final target prediction, a dense feedforward connection
was used to transform the 64-dimensional hidden layer
output into a 42-dimensional vector. Sigmoidal units
were used as the final non-linearity. In all, this makes
for about 30,442 parameters. More about the reason
for selecting these specific parameters is discussed in
Section 6.1.3.
LSTM-SED. For the encoder-decoder LSTM model,
the encoder had the same parameters as the standard
model (LSTM-STD) above. However, instead of having
a dense connection at the output, the 64-dimensional
vector was fed into the decoder LSTM. This LSTM used
a sequence length of 5 and 1 hidden layer with n = 64
units in each cell. It produced five 64-dimensional
output vectors that were transformed through dense,
feedforward connections into five 42-dimensional final
prediction vectors. This model contains about 74,706
parameters. Due to the model’s complexity, it takes
more time to train LSTM-SED for the same number of
epochs as in the case of LSTM-STD.

All of the above models were then used to make
predictions for the data in the test set. Given 10 time
steps of data as input at each step, the models per-
formed one-step- or five-step-ahead predictions, which
were evaluated against the true values based on the root
mean squared error (RMSE). The RMSE was measured
for each test file and their mean was reported as the
evaluation metric.

We used the deep learning library Lasagne [7],
which is built on top of Theano [30], for training the
LSTM models. The mean training/test set errors were
tracked at each epoch. The training was done until the
test set error had largely flattened and no further gains
were noticed.

5.2 Datasets We used one real and two synthetic
datasets for our experiments.
Real Flight Data. The real-world data is the Flight
Operations Quality Assurance (FOQA) dataset from
NASA [1]. This data contains air traffic flight sensor in-
formation and is being used in the research community
to detect issues in aircraft operation due to mechanical,
environmental or human factors [20, 27]. The data con-
tains over a million flights, each having a record of about
300 (multivariate) time series measurements, sampled at
1 Hz over the duration of the flight. These parameters
include both discrete and continuous readings from con-
trol switches (like thrust, autopilot, flight director, etc.)
and sensors (like altitude, angle of attack, drift angle,
etc.). For our experiments, we selected 42 features rep-
resenting all the continuous sensor measurements from
110 flights of the same type of aircraft, landing at the
same airport. The focus was on a portion of the flight

below 10, 000 feet until touchdown (duration 600-1500
timestamps), which makes for about 77,000 time-steps
of data in all. We then split it into train-test sets with
a ratio of 10:1.
Synthetic VAR-generated data. A 10th order VAR
model was used to generate data similar to the real
flight data with 42 continuous variables. We initialized
the model with parameters learned from the real flight
data. This model was then fed with 10 random initial
inputs and was made to predict the next values, using
its own output as inputs in successive steps. The
initial 50 values were discarded as burn-in time, and the
rest 700 steps were considered one flight. In all, data
corresponding to about 77,000 timesteps (≈ 110 flights)
was generated. This was then split into train-test sets
with a ratio of 10:1.
Synthetic LSTM-generated data. Similar to VAR
data above, an LSTM with an input sequence length of
10 was used to generate synthetic data that resembled
the real flight data. This LSTM was also initialized with
parameters learned from the real data and generated
new data in the same way as VAR above.

The data from all the above datasets was normal-
ized using “min-max” scaling on a per-feature basis to
lie in the interval [0, 1], i.e., xnorm = x−xmin

xmax−xmin
.

6 Experimental Results

6.1 Aviation data We start with a comparison of
VAR and LSTM on the FOQA dataset with model
parameters as discussed in Section 5.

6.1.1 One-step-ahead Prediction The one-step-
ahead predicted values from VAR and LSTM-STD
on the test set are shown in Figure 5 for 4 out of
42 selected features. Qualitatively, VAR performs
slightly better than LSTM-STD for all the features,
closely modeling the data in both the smooth and
highly oscillating scenarios. It is also interesting to
note that if LSTM-STD overshoots the high peaks in
the data oscillations, it tends to keep overshooting
(Figure 5c); similarly, if it undershoots the low peaks, it
keeps undershooting (Figure 5b). For a quantitative
comparison, the average RMSE on the test sets are
shown in Table 1 (first column)—VAR achieves a lower
RMSE which is statistically significant based on a
Kolmogorov-Smirnov (K-S) test.

6.1.2 Multi-step-ahead Prediction We tested
three models to perform multi-step-ahead prediction
into the future, given the past 10 inputs. The first model
is the same 10th order VAR model that was trained ear-
lier in section 6.1.1, i.e., use x1,. . . , x10 as input to pre-
dict x̂11. Subsequently, we used inputs x2,. . . , x10, x̂11
to predict x̂12, and so on. The second model is also the

(a) Altitude (b) Angle Of Attack 1 (c) Drift Angle (d) Flight Path Acceleration

Figure 5: Plots of portions of selected features from a file in the original aviation data and the 1-step predictions made by
LSTM-STD and VAR. Note that the x-axis and y-axis differ in scale for each feature because different zoomed-in sections
of the same flight are shown for clarity. VAR follows the original data more closely as compared to LSTM. In the first
figure, VAR has completely overlapped the original data. Also, notice that LSTM consistently overshoots/undershoots the
peaks.

same LSTM-STD model from section 6.1.1, but made
to predict multiple steps into the future using the imme-
diate predicted values similar to the VAR model. The
third model is the LSTM-SED model that uses inputs
x1,. . . , x10 to predict x̂11,. . . , x̂10+k at once for k-step
prediction. We expected VAR and LSTM-STD to make
more errors as the number of future steps increases be-
cause the models use their own outputs as inputs in the
next step, which can cause the errors to accumulate and
grow. Since LSTM-SED is trained to use only the true
inputs to predict all the future steps at once, it may not
suffer from error accumulation. However, LSTM-SED
has the representational challenge of encoding all the
information from data input sequence into one vector of
limited dimension, and use only this vector to predict
multiple future steps.

The complete set of results are presented in Table
1, along with error bar plots of RMSE (Standard Devi-
ation) as a function of delay in Figure 6. Surprisingly,
VAR outperforms both the LSTM models for 5-step-
ahead prediction! We did additional experiments to go
up to 10-step-ahead prediction, and VAR continues to
dominate both the LSTM models, and the improvement
is statistically significant.

For both VAR and LSTM-STD, the errors grow fast
as we increase the number of predicted steps into the fu-
ture. LSTM-STD starts with more accurate predictions
as compared to LSTM-SED at 1-step, and then the er-
rors quickly grow to exceed the LSTM-SED at 3-steps.
The VAR also starts at significantly lower error than
LSTM-SED but then it comes close to LSTM-SED at
5-steps. Also, note that the standard deviation at step-
5 is smaller for LSTM-SED as compared to VAR. This
could mean that the LSTM-SED model is more stable
in terms of learning as the variability in test error is
smaller. These observations motivated us to train an-
other LSTM-SED to perform 10-step-ahead prediction

to see if the trend changes. As can be seen from the er-
ror bar plot in Figure 6 and Table 1 (last column), the
trend continues to be similar, though the gap between
the VAR and LSTM-SED stops decreasing with VAR
still outperforming LSTM-SED.

Figure 6: Error bar plots for RMSE (Standard Deviation) on
the flight data for VAR, LSTM-STD and LSTM-SED for all
delay values between 1 and 10. The RMSE for LSTM-STD
errors grow rapidly as compared to the other two. Note that
the gap between VAR and LSTM-SED becomes narrower for
higher delays.

6.1.3 Exploring LSTM-STD Architectures To
verify that we used the best LSTM architecture, we
conducted experiments by varying some of the different
configurable parameters such as the number of hidden
units n, the input sequence length and the number of
layers. These experiments were done on the aviation
data. The models were trained for 800 epochs or a
fixed time of 10 hours, whichever ended earlier. The
results presented in Table 2 indeed showed that our
configuration of 64 hidden units, input sequence length
of 10 and 1 hidden layer gives the best performance
within a reasonable training time. Note that the results
for 2 hidden layers are not shown in the table, because

Model Delay

1 2 3 4 5 10

VAR 0.752*(0.103) 1.093*(0.130) 1.439*(0.173) 1.767*(0.220) 2.073*(0.263) 3.138*(0.402)
LSTM-STD 0.867 (0.120) 1.304 (0.137) 1.769 (0.169) 2.236 (0.205) 2.694 (0.246) 4.663 (0.501)
LSTM-SED 1.105 (0.160) 1.319 (0.163) 1.607 (0.185) 1.914 (0.209) 2.209 (0.231) 3.329 (0.375)

Table 1: RMSE (Standard Deviation) values for different future prediction delays for aviation data - VAR vs LSTM. VAR
beats LSTM based models in terms of error performance. However, for larger delays the standard deviation for LSTM-SED
is the best, which indicates it is more stable than the other two models. Also, note that the * on VAR RMSE values indicate
that these results are statistically significant as compared to the LSTM values, based on the Kolmogorov-Smirnov test.

Input Hidden Units

Length 32 64 128

5 1.024 (0.169) 0.942 (0.144) 0.919 (0.118)
10 1.041 (0.183) 0.878 (0.118) 0.913 (0.118)
20 1.038 (0.172) 0.896 (0.121) 0.912 (0.133)

Table 2: RMSE (Standard Deviation) summary for 1-step
predictions by varying LSTM-STD parameters of input
sequence length and number of hidden units. Our primary
model with 1 LSTM layer, input sequence length of 10 and
64 hidden units performs the best. Note that for the aviation
data, higher RMSE for 32 hidden units shows that within-
feature correlation is important to capture.

we only tested 64 hidden units with 2 layers and
obtained worse performance than with 1 hidden layer.

Some other observations about training LSTMs are
as follows. If the data has important correlation within
its multiple variables and has no long-term dependen-
cies, it is better to use more hidden units and smaller
sequence length. This allows the backpropagation-
through-time algorithm to be faster as the gradient is
to be calculated at smaller number of time steps. Also,
having more hidden units can help capture the correla-
tion between features. Another observation is that the
deeper networks are also not always better. When an-
other layer is added for the data which is not of high
complexity, it becomes harder for the model to reach
the local minimum because it has to estimate twice the
number of original parameters.

6.2 VAR-generated Data We looked at perfor-
mance of VAR and LSTM on synthetic data generated
from a VAR model. The average 1-step-ahead predic-
tion RMSE and standard deviation values on the test
sets are shown in Table 3. Since the VAR-generated
data is relatively simple, LSTM-STD’s performance is
better than on the aviation data. However, VAR still
outperforms LSTM-STD by a substantial margin. In
synthetic VAR-generated data, one would expect VAR
to perform well, but it was surprising that LSTM-STD
was outperformed by such a large margin.

Data VAR LSTM-STD

VAR-generated 0.160 0.445
LSTM-generated 1.161 1.590

Table 3: RMSE summary for 1-step predictions for both
VAR-generated and LSTM-generated data. VAR outper-
forms LSTM by a good margin for both the datasets. The
good performance of VAR on synthetic datasets as well leads
to the conclusion that VAR is better than LSTM at predict-
ing continuous time series data.

6.3 LSTM-generated data. For a fair comparison,
we looked at performance of VAR and LSTM on syn-
thetic data generated from a LSTM model. The aver-
age 1-step-ahead prediction RMSE and standard devi-
ation values on the test sets are shown in Table 3. Sur-
prisingly, we found VAR outperformed LSTMs even on
LSTM-generated data! The result suggests that VAR
may be better at predicting continuous multivariate
time-series, especially ones with short term dependence,
compared to LSTM. One reason to explain this behav-
ior could be as observed by Gers et al. in [9]. In their
work, time-window based simple, feed-forward neural
networks outperform LSTMs in the prediction of the
Mackey-Glass time-series [18]. The observation is that
LSTM’s main strength - the ability to remember signif-
icant events from a long time ago - is not of much use in
the time-series where the next values can be predicted
by just looking at some previous time-steps. Therefore,
in such data, it might be more useful to use simpler,
traditional approaches, such as VAR in our case. It is
also possible that all the datasets that we have used in
our experiments do not need events from long back to
be remembered for modeling, therefore using linear ap-
proaches like VAR produce better results than LSTM.

7 Conclusions

In this work, we presented a comparison of VAR and
LSTM on time-series prediction on the multivariate,
continuous-valued aviation data. Two variants of LSTM
were considered - standard LSTM predictor and a se-
quential encoder-decoder model for multi-step predic-
tion. The experiments on real and synthetic data show

that VAR is better than LSTMs at predicting such time-
series data. We attribute this to the hypothesis that
for data where the future values can be predicted by
just looking at a few previous time-steps, it might be
better to use simpler linear models like VAR. Though
LSTMs show promise with continuous-valued data, they
do not currently outperform the state-of-the-art in this
setting.

References

[1] NASA Flight Dataset. Available at
https://c3.nasa.gov/dashlink/projects/85/.

[2] Federal Aviation Administration. Terminal area
forecast summary. https://www.faa.gov/data_

research/aviation/taf/media/TAF_Summary_FY_

2015-2040.pdf, 2015.
[3] Federal Aviation Administration. Next generation

air transportation system. https://www.faa.gov/

nextgen/, 2016.
[4] K. Cho, B. V. Merriënboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio. Learning
Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. EMNLP, pages
1724–1734, 2014.

[5] A. M. Dai and Q. V. Le. Semi-supervised sequence
learning. In NIPS, pages 3079–3087, 2015.

[6] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR
and LU factorizations. SIAM Journal on Scientific
Computing, 34(1):206–239, 2012.

[7] S. Dieleman et al. Lasagne: First release., August 2015.
[8] A. ElSaid, B. Wild, J. Higgins, and T. Desell. Using

lstm recurrent neural networks to predict excess vibra-
tion events in aircraft engines. In IEEE Conference on
eScience, 2016.

[9] F. A. Gers, D. Eck, and J. Schmidhuber. Applying
lstm to time series predictable through time-window
approaches. In International Conference on Artificial
Neural Networks, pages 669–676. Springer, 2001.

[10] G. H. Golub and C. F. Van Loan. Matrix computations,
volume 3. JHU Press, 2012.

[11] D. Gorinevsky, B. Matthews, and R. Martin. Aircraft
anomaly detection using performance models trained
on fleet data. In CIDU, pages 17–23, 2012.

[12] A. Graves and J. Schmidhuber. Offline handwriting
recognition with multidimensional recurrent neural net-
works. In NIPS, pages 545–552. 2009.

[13] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735–1780, November
1997.

[14] M. Jaggi and M. Sulovsk. A simple algorithm for
nuclear norm regularized problems. In ICML, pages
471–478, 2010.

[15] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell.
Learning to diagnose with lstm recurrent neural net-
works. In ICLR, 2015.

[16] L. Ljung. System identification: theory for the user.
Springer, 1998.

[17] H. Lutkepohl. New introduction to multiple time series
analysis. Springer, 2007.

[18] M. C. Mackey and L. Glass. Oscillation and chaos in
physiological control systems. Science, 197(4300):287–
289, 1977.

[19] I. Melnyk and A. Banerjee. Estimating structured
vector autoregressive models. In ICML, 2016.

[20] I. Melnyk, B. Matthews, A. Banerjee, and N. Oza.
Semi-Markov switching vector autoregressive model-
based anomaly detection in aviation systems. Knowl-
edge Discovery and Data Mining, 2016.

[21] I. Melnyk, B. Matthews, H. Valizadegan, A. Baner-
jee, and N. Oza. Vector autoregressive model-
based anomaly detection in aviation systems. JAIS,
13(4):161–173, 05 2016.

[22] R. Pascanu, T. Mikolov, and Y. Bengio. On the
difficulty of training recurrent neural networks. ICML,
28:1310–1318, 2013.

[23] M. Saada and Q. Meng. An efficient algorithm for
anomaly detection in a flight system using dynamic
bayesian networks. In ICONIP, pages 620–628, 2012.

[24] J. Schmidhuber, D. Wierstra, and F. Gomez. Evolino:
Hybrid neuroevolution / optimal linear search for se-
quence learning. IJCAI, pages 853–858, 2005.

[25] A. N. Srivastava. Greener aviation with virtual sensors:
a case study. Knowledge Discovery and Data Mining,
24(2):443–471, 2012.

[26] N. Srivastava, E. Mansimov, and R. Salakhutdinov.
Unsupervised learning of video representations using
lstms. In ICML, 2015.

[27] I. C. Statler and D. A. Maluf. Nasa’s aviation system
monitoring and modeling project. Technical report,
SAE Technical Paper, 2003.

[28] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In NIPS, pages
3104–3112, 2014.

[29] S. J. Taylor. Modelling financial time series. World
Scientific Publishing, 2007.

[30] Theano Development Team. Theano: A Python frame-
work for fast computation of mathematical expressions.
arXiv e-prints, abs/1605.02688, May 2016.

[31] R. S. Tsay. Analysis of financial time series, volume
543. John Wiley & Sons, 2005.

[32] P. A Valdés-Sosa, J. M Sánchez-Bornot, A. Lage-
Castellanos, M. Vega-Hernández, et al. Estimating
brain functional connectivity with sparse multivariate
autoregression. Philosophical Transactions of the Royal
Society, 360(1457):969–981, 2005.

[33] F. Weninger, F. Eyben, and B. Schuller. On-line
continuous-time music mood regression with deep re-
current neural networks. In IEEE ICASSP, pages
5412–5416, 2014.

[34] M. Wöllmer, F. Eyben, et al. Abandoning emotion
classes-towards continuous emotion recognition with
modelling of long-range dependencies. In INTER-
SPEECH, volume 2008, pages 597–600, 2008.

Figure 7: Learning curve of LSTM-STD on flight data.
The plot shows the RMSE values on the training data and
test data as a function of the number of epochs over the
training data. The test set error flattens out after a while,
with no overfitting.

A Additional Results

A.1 Real Flight Data

A.1.1 LSTM-STD Learning Curve The learning
curve for LSTM-STD with input sequence length of 10
and 64 hidden units is shown in Figure 7. This curve
is for the real flight data. Note that, the test set error
closely follows the training error and no over-fitting is
noticed. The test set error flattens out after a while
with no significant changes.

A.1.2 1-step-ahead predictions Since there were
42 continuous features in all that we used in our experi-
ments, the plots of 1-step-ahead predictions for selected
portions of a flight are shown in Figures 9 and 10. These
plots are for the remaining 38 features (the rest 4 were
in Figure 5). Note that the discussion in Section 6.1.1
can be seen again in the plots here, that is if LSTM-STD
overshoots some peaks, it keeps overshooting; similarly
if it undershoots, it keeps undershooting further peaks
as well.

To gain a better understanding of the errors made
by LSTM-STD and VAR in 1-step prediction, we
present the error histograms for the same selected fea-
tures in Figure 8. VAR is seen to have many errors close
to zero compared to LSTM-STD, and LSTM-STD can
sometimes have large errors.

A.2 VAR-generated data

(a) Altitude (b) Angle Of Attack 1

(c) Drift Angle (d) Flight Path Acceleration

Figure 8: Histogram plots of errors made by LSTM-STD
and VAR for selected features (same as Figure 5) from a
file in the real flight data. The errors are well distributed
following a bell curve for both VAR and LSTM.

A.2.1 1-step-ahead predictions For the VAR-
generated data in Section 5.2, the one-step predicted
values on the test set are shown in Figure 11 for selected
features. The figure shows that the data is of compara-
tively less complexity. Note that, the VAR has learned
the features almost perfectly, while the LSTM-STD still
makes some errors.

To have a better look at the errors made by LSTM-
STD and VAR, the error histograms for selected features
are shown in Figure 12. Again, the errors seem to be
well distributed for both VAR and LSTM-STD as in the
case of aviation data.

A.3 LSTM-generated data

A.3.1 1-step-ahead predictions For the LSTM-
generated data in Section 5.2, the one-step predicted
values on the test set are shown in Figure 13 for selected
features. Note that, as compared to the VAR data, the
data generated from LSTMs is of comparatively higher
complexity. VAR has again outperformed LSTMs here,
but not by a very significant measure.

To have a better look at the errors made by LSTM-
STD and VAR, the error histograms for selected features
are shown in Figure 14. Again, the errors seem to be
well distributed for both VAR and LSTM-STD as in the
case of aviation data.

(i) Altitude Rate (ii) Baro Correct Altitude (iii) Radio Altitude (iv) Angle of Attack 2

(v) Pitch Angle (vi) Roll Angle (vii) Ground Speed (viii) Inertial Vertical Speed

(ix) True Airspeed (x) Mach Number (xi) Magnetic Heading (xii) Body Longitudinal Ac-
celeration

(xiii) Cross Track Accelera-
tion

(xiv) Lateral Acceleration (xv) Longitudinal Accelera-
tion

(xvi) Vertical Acceleration

(xvii) Exhaust Gas Tempera-
ture 1

(xviii) Exhaust Gas Temper-
ature 2

(xix) Exhaust Gas Tempera-
ture 3

(xx) Exhaust Gas Tempera-
ture 4

Figure 9: Plots of portions of selected features from a file in the real flight data and the 1-step predictions made by
LSTM-STD and VAR. Note that the x-axis and y-axis are different for each feature because selected sections of each
feature have been zoomed-in for clarity. 20 features are shown here, apart from the 4 in Figure 9, out of the total 42.

(i) Fuel Flow 1 (ii) Fuel Flow 2 (iii) Fuel Flow 3 (iv) Fuel Flow 4

(v) Fuel Quantity Tank 1 (vi) Fuel Quantity Tank 4 (vii) Fan Speed 1 1 (viii) Fan Speed 2 1

(ix) Fan Speed 3 1 (x) Fan Speed 4 1 (xi) Fan Speed 1 2 (xii) Fan Speed 2 2

(xiii) Fan Speed 3 2 (xiv) Fan Speed 4 2 (xv) Oil Temperature 1 (xvi) Oil Temperature 2

(xvii) Oil Temperature 3 (xviii) Oil Temperature 4

Figure 10: Plots of portions of selected features from a file in the real flight data and the 1-step predictions made by
LSTM-STD and VAR. Note that the x-axis and y-axis are different for each feature because selected sections of each
feature have been zoomed-in for clarity. 18 features are shown here, apart from the 4 in Figure 5, out of the total 42.

Figure 11: Plots of portions of selected features from a file in the VAR generated data and the 1-step predictions made
by LSTM-STD and VAR. Note that the x-axis and y-axis are different for each feature because selected sections of each
feature have been zoomed-in for clarity. VAR again outperforms LSTM and follows the original plots really well. A small
amount of peak overshooting can again be noticed in the LSTM-STD predictions (as for the aviation data).

(i) Feature 1 (ii) Feature 5 (iii) Feature 7 (iv) Feature 17

Figure 12: Histogram plots of errors made by LSTM-STD and VAR for selected features (same as Figure 11) from a file
in the VAR-generated data. Both VAR and LSTM-STD have a good bell-shaped error distribution.

Figure 13: Plots of portions of selected features from a file in the LSTM-generated data and the 1-step predictions
made by LSTM-STD and VAR. Note that the x-axis and y-axis are different for each feature because selected sections of
each feature have been zoomed-in for clarity. VAR again outperforms LSTM-STD though not as significantly, probably
due to more osciallations in this data

(i) Feature 1 (ii) Feature 5 (iii) Feature 7 (iv) Feature 17

Figure 14: Histogram plots of errors made by LSTM-STD and VAR for selected features (same as Figure 13) from a file
in the LSTM-generated data. Both VAR and LSTM-STD have a good bell-shaped error distribution.

